Analyzing demand

Intermediate Micro

Lecture 6

Chapter 6 of Varian
Analyzing demand

Can model utility function and decisions

- Even for p, m we don’t observe
- Can use demand functions to model comparative statics
 - Comparative statics: Studying the effect on the equilibrium outcome due to a change in parameters.
 - How does demand change as income increases?
 - What are the effects on demand of a change in prices?
 - Categorize goods based on comparative statics
Review: Demand function

Start with basic consumer decision problem:

\[
\max_{x_1, x_2} u(x_1, x_2) \\
\text{s.t. } p_1 x_1 + p_2 x_2 = m
\]

Leave \(p_1, p_2, m \) as parameters, and obtain demand functions

\[
x_1(p_1, p_2, m) \\
x_2(p_1, p_2, m)
\]
Changing m

\[x_1(p_1, p_2, m) \]

- Consider effect of $\uparrow m$
- Easiest measure: \(\frac{dx_1}{dm} \) (\(= \frac{d}{dm} x_1(p_1, p_2, m) \))
- **Normal good**: \(x_1 \) is a normal good (at \((p_1, p_2, m))\) if \(\frac{dx_1}{dm} > 0 \)
- **Inferior good**: \(x_1 \) is an inferior good (at \((p_1, p_2, m))\) if \(\frac{dx_1}{dm} < 0 \)
Changing Elasticity Examples Changing own price Changing other good’s price Examples

Normal vs Inferior

x_1 is normal
x_2 is normal

x_1 is inferior
x_2 is normal

Can both goods be inferior?
Income offer curve

- **Income offer curve**: A graph of all optimal bundles for a given \(p_1, p_2 \), for all values of \(m \)
- \(m \) varies
- \(p_1, p_2 \) stay constant
- Plug various values of \(m \) into demand functions, plot results
- If both goods are normal, income offer curve is upward sloping (↗)
Income offer curve

- **Income offer curve**: A graph of all optimal bundles for a given p_1, p_2, for all values of m
- m varies
- p_1, p_2 stay constant
- Plug various values of m into demand functions, plot results
- If both goods are normal, income offer curve is upward sloping (↗)
Engel curve

- Engel curve: A graph of the demand for one of the goods, for all values of m, holding constant p_1, p_2
- m varies
- p_1, p_2 stay constant
- Plug various values of m into demand function, plot results
- If the good is normal, Engel curve is upward sloping (↗)
- The Engel curve never slopes downward
Changing m

Elasticity

Examples

Changing own price

Changing other good’s price

Examples

\uparrow

Income offer curve

axes: x_1, x_2

\leftarrow

Engel curves

axes: x_i, m
Elasticity - Not in book!

- **Income elasticity of demand:** \(\epsilon_{x_i,m} = \frac{dx_i}{dm} \times \frac{m}{x_i} \)

- This formula is called point (income) elasticity

- Percent change in \(x_i \) relative to the percent change in \(m \)
 - Non-calculus formula: \(\frac{\Delta x/x}{\Delta m/m} \)
 - Called arc (income) elasticity

- Formula for (instantaneous) percent growth of \(y \) due to \(z \):
 \(\frac{d}{dz} \ln(y(z)) \)

- \(\epsilon_{x_i,m} = \frac{\frac{d}{dm} \ln(x_1(p_1,p_2,m))}{\frac{d}{dm} \ln(m)} \)
Why use elasticity - Not in book!

\[\frac{dx_i}{dm} : \text{change in } x_i \text{ due to increase in } m \]

- \[\frac{dx_i}{dm} > 0: \text{increasing in } m \]
- \[\frac{dx_i}{dm} < 0: \text{decreasing in } m \]
- Scale?

\[\frac{dx_i}{dm} * \frac{m}{x_i} \text{ (income elasticity of demand): Same sign as } \frac{dx_i}{dm} \]

- Note that elasticity (and slope!) can vary with \(m \)
Elasticity-based definitions—Not in book!

- Unit elasticity: when
 \[\epsilon_{x_i,m} = 1 \]
- \(x_i \) grows at same rate as \(m \)
- Any ray **through the origin** has unit elasticity

Engel curve with unit elasticity
Homothetic preferences

- Homothetic preferences: A set of preferences with the property that, if \((x_1, x_2) \sim (y_1, y_2)\), then \((tx_1, tx_2) \sim (ty_1, ty_2), \forall t \geq 0\)

- Equivalent properties:
 - Income offer curves are straight lines through the origin, for any \((p_1, p_2)\)
 - Engel curves are straight lines through the origin, for any \((p_1, p_2)\)
 - \(\epsilon_{x_i, m}\) for any \((p_1, p_2, m)\), for any good \(i\)
Elasticity-based definitions- Not in book!

- Luxury good: x_i for which $\epsilon_{x_i,m} > 1$
- x_i grows at faster rate than m
- To identify on Engel curve
 1. Draw ray from origin to point
 2. If curve crosses ray from left to right, good is luxury at this (p_1, p_2, m)

Engel curve for Ikea furniture
Elasticity-based definitions- Not in book!

- Necessary good: x_i for which $\epsilon_{x_i,m} < 1$
- x_i grows at slower rate than m
- To identify on Engel curve
 1. Draw ray from origin to point
 2. If curve crosses ray from right to left, good is necessary at this (p_1, p_2, m)

Engel curve for Ikea furniture
Perfect substitutes

\[u(x_1, x_2) = 2x_1 + 3x_2 \]
\[m = x_1 + 2x_2 \]
\[x_1(1, 2, m) = m, \ x_2(1, 2, m) = 0 \]
Cobb Douglas

\[u(x_1, x_2) = x_1^{0.4} x_2^{0.6} \]
\[m = 0.5x_1 + 1.5x_2 \]
\[x_1(0.5, 1.5, m) = 0.8m, x_2(0.5, 1.5, m) = 0.4m \]

Income offer curve

Engel curve for \(x_2 \)
Quasilinear

\[u(x_1, x_2) = \ln(x_1) + 0.25x_2 \]

\[m = x_1 + x_2 \]

\[x_1(1, 1, m) = \begin{cases}
 m & \text{if } m < 4 \\
 4 & \text{if } m \geq 4
\end{cases}, \quad
 x_2(1, 1, m) = \begin{cases}
 0 & \text{if } m < 4 \\
 m - 4 & \text{if } m \geq 4
\end{cases} \]
Changing p_1: effect on x_1

$x_1(p_1, p_2, m)$

- Consider effect of ↑ p_i on x_i
- Derivative: $\frac{dx_i}{dp_i} < 0$ for all known goods
- Giffin good: A good for which $\frac{dx_i}{dp_i} > 0$
 - No documented examples!
Own-price elasticity - Not in book!

- **Own-price elasticity of demand:** $\epsilon_{x_i,p_i} = -\frac{dx_i}{dp_i} \cdot \frac{p_i}{x_i}$
- %↓ in x_i relative to %↑ in p_1

<table>
<thead>
<tr>
<th>ϵ_{x_i,p_i}</th>
<th>Description</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\epsilon_{x_i,p_i} = 0$</td>
<td>Perfectly inelastic</td>
<td>x_i does not change when p_i does</td>
</tr>
<tr>
<td>$0 < \epsilon_{x_i,p_i} < 1$</td>
<td>Inelastic</td>
<td>x_i changes less than p_i does</td>
</tr>
<tr>
<td>$\epsilon_{x_i,p_i} = 1$</td>
<td>Unit elastic</td>
<td>x_i changes by same % p_i does</td>
</tr>
<tr>
<td>$1 < \epsilon_{x_i,p_i} < \infty$</td>
<td>Elastic</td>
<td>x_i changes more than p_i does</td>
</tr>
<tr>
<td>$\epsilon_{x_i,p_i} = \infty$</td>
<td>Perfectly elastic</td>
<td>$\uparrow p_i \Rightarrow x_i = 0$, $\downarrow p_i \Rightarrow x_i = \infty$</td>
</tr>
</tbody>
</table>
Inverse demand

\[x_1(p_1, p_2, m) \]

- Take \(m, p_2 \) as fixed
- Rewrite demand function as \(x_1(p_1) \)
- Can find inverse demand function: \(p_1(x_1) \)
 - Gives \(p_1 \) that causes \(x_1 \) to be optimal
 - Only exists if each value \(x_1 \) optimal only for one \(p_1 \)
Implications of own-price elasticity - Not in book!

- Expenditure on good 1 = $p_1 x_1$
- If $\epsilon_{x_i,p_i} > (\leq, <) 1$
 - $\uparrow p_1$ causes \downarrow (no change, \uparrow) in $p_1 x_1$

<table>
<thead>
<tr>
<th>ϵ_{x_i,p_i}</th>
<th>Description</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\epsilon_{x_i,p_i} = 0$</td>
<td>Perfectly inelastic</td>
<td>x_i does not change when p_i does</td>
</tr>
<tr>
<td>$0 < \epsilon_{x_i,p_i} < 1$</td>
<td>Inelastic</td>
<td>x_i changes less than p_i does</td>
</tr>
<tr>
<td>$\epsilon_{x_i,p_i} = 1$</td>
<td>Unit elastic</td>
<td>x_i changes by same % p_i does</td>
</tr>
<tr>
<td>$1 < \epsilon_{x_i,p_i} < \infty$</td>
<td>Elastic</td>
<td>x_i changes more than p_i does</td>
</tr>
<tr>
<td>$\epsilon_{x_i,p_i} = \infty$</td>
<td>Perfectly elastic</td>
<td>$\uparrow p_i \Rightarrow x_i = 0$, $\downarrow p_i \Rightarrow x_i = \infty$</td>
</tr>
</tbody>
</table>
Changing p_1: effect on x_2 - Not in book!

\[x_2 = \frac{m}{p_2} - \frac{p_1 x_1}{p_2} \]

- Suppose $\uparrow p_1$
- $\frac{dx_2}{dp_1} > (=, <) 0$ when $\epsilon_{x_i, p_i} > (=, <) 1$
- Complements: Two goods for which $\frac{dx_2}{dp_1} < 0$
- Substitutes: Two goods for which $\frac{dx_2}{dp_1} > 0$
Price offer curve

- **Price offer curve**: A graph of all optimal bundles for a given \(m, p_2 \), for all values of \(p_1 \)
- \(p_1 \) varies, \(m, p_2 \) constant
- Plug values of \(p_1 \) into demand functions, plot
- Complements: POC upward sloping (↗)
- Substitutes: POC downward sloping (↘)
Price offer curve

- **Price offer curve**: A graph of all optimal bundles for a given m, p_2, for all values of p_1
- p_1 varies, m, p_2 constant
- Plug values of p_1 into demand functions, plot
- Complements: POC upward sloping (↗)
- Substitutes: POC downward sloping (↘)
Demand curve

- **Demand curve**: A graph of the demand for good \(i \), for all values of \(p_i \), holding constant \(m, p_{\text{not } i} \)

- **Non-Giffin goods**: downward-sloping or flat
Perfect substitutes

\[u(x_1, x_2) = x_1 + x_2 \]

\[10 = p_1 x_1 + x_2 \]

\[x_1(p_1, 1, 10) = \begin{cases} \frac{10}{p_1} & \text{if } p_1 < 1 \\ [0, 10] & \text{if } p_1 = 1 \\ 0 & \text{if } p_1 > 1 \end{cases} \]

\[x_2(p_1, 1, 10) = \begin{cases} 0 & \text{if } p_1 < 1 \\ 10 - x_1 & \text{if } p_1 = 1 \\ 10 & \text{if } p_1 > 1 \end{cases} \]
Cobb-Douglas

\[u(x_1, x_2) = x_1^{0.75} x_2^{0.25} \]

\[40 = 2x_1 + p_2 x_2 \]

\[x_1(2, p_2, 40) = 15, \quad x_2(2, p_2, 40) = \frac{10}{p_2} \]
Quasilinear

\[u(x_1, x_2) = \ln(x_1) + x_2 \]
\[10 = p_1 x_1 + x_2 \]
\[x_1(p_1, 1, 10) = \frac{1}{p_1}, \quad x_2(p_1, 1, 10) = 9 \]