The Making of the Pundit, 2010:
When Strong Ties Trump Weak Ones

Paul Musgrave
Department of Government
Georgetown University
rpm47@georgetown.edu

November 28, 2010

*Acknowledgements
Abstract

Motivated by an experience serving as a “campaign manager” for a colleague’s online bid to become the *Washington Post*’s “Next Great Pundit,” I present an argument showing when reliance on Internet–based social networking tools (such as Facebook and Twitter) may lead campaigns to perform more poorly than those which can use old-fashioned retail politics.
1 Choosing a Pundit

In the autumn of 2010, the Washington Post held its second annual “America’s Next Great Pundit” contest through its Web site. The straightforward process is summarized in Table 1. The rules were not known to the contestants in advance, beyond a general notion that there would be several rounds of elimination. Although the Post advertised the contest as being decided by the newspaper’s readers at large, it was widely believed by the candidates and their supporters that get-out-the-vote efforts would prove decisive. Certainly, the vote totals suggest that mobilization by candidates was far more important than any undirected audience effect. Accordingly, the contestants quickly developed and employed Facebook “fan” pages, Twitter feeds, mass emails, blogs, and (in the case of one contestant, a reporter for a Boston television station) a professionally-produced 45-second video.

Along with a handful of other graduate students in the Government Department at Georgetown University, I served as a manager for the initially quixotic campaign of Conor Williams, a political theory Ph.D. student at Georgetown. (Williams won the contest and its prize, a 12-week contract writing for the Post’s op-ed pages.) Much of this brains trust’s time was spent suggesting ideas and political science findings that a general audience might find interesting, a project inspired by (and sometimes a direct imitation of) the blog The Monkey Cage (http://www.themonkeycage.org). But, political scientists being political scientists, we also spent a good deal of time working on campaign strategy. As it became clear that our candidate had a chance at winning the contest, we took providing this advice more seriously.

Our original expectation was simply that each round would be a test of mobilization, and consequently recruited Georgetown campus media outlets, emailed our individual networks of contacts, and even sought to drum up hometown support by putting stories in Williams’s
hometown newspaper. The Post upset our plans in the second round, when they changed from a first–n–past–the–post rule to a rule in which the candidate with the highest number of votes would be eliminated. We were faced with two immediate concerns, neither of which we had considered before either in coursework or bull sessions. First, who should we target for elimination? Our instinct was to concentrate on our apparently strongest rival candidate for elimination, in the hopes that this would put our candidate in the best position in the final round; as I demonstrate below, this was in fact the correct strategy for us, especially given our estimation that we were not the strongest team in the hunt at the point.

The second question was more troublesome. How should we communicate our strategy to our Facebook friends and Twitter acquaintances? We assumed that other competitors were reading our communications, as we were theirs; the whole point of such pages, after all, is to disseminate a message to as large an audience as possible. We further assumed that the Post staff were keeping up with such messages, and that the judges (who could expel competitors, grant Survivor–style immunities, and add rounds as they pleased) would be dismayed to find outright negative campaigning going on in their contest.

Exploring these questions in detail leads to a surprising conclusion: In some situations, and particularly in those in which vote shares are relatively evenly distributed or in which players have asymmetric abilities to communicate via traditional, face–to–face networks, reliance on Internet–based social networks can be a liability. This article seeks to isolate the effect of the differential ability of such networks to coordinate mobilization activity.

2 This was no idle concern. Angry judges could act as rational or irrational gods of vengeance and reward. The judges had already suspended several candidates in an earlier, “play-in” round for suspected vote fraud; they had also granted an immunity from challenge to one competitor in the first round. This became a problem for us in evaluating the relative strengths of other candidates, since we lacked any hard evidence to suggest whether that candidate would be weak or strong. In the event, the candidate turned out to be much stronger than we had anticipated, a complication I ignore in the model exposition.

3 Conor Williams has written his own account of the contest (Williams 2010) for a PBS Web site, but his account is distinctly normative. See also Rosenberg (2010) for reflections on the contest’s motivations and importance.
2 Theory

Analyzing the contest’s dynamics is simple. Even though it is formally a game (the outcome depends on the interactions of the players), the mathematics are straightforward since the prize is indivisible and since we assume that voters and players are motivated solely by their own candidate’s chances of success (that is to say, there is no coalition-building or ideological voting at work).

Consider a simple example. In a multi-stage voting process with \(m \) players, \(n \) players will be advanced to the next round, \(m \in \mathbb{N}, n \in \mathbb{N}, m > n \geq 2 \). Each player \(P_i \) commands \(V_i \) voters, \(V_i \geq 1 \forall i \) and \(V \in \mathbb{N} \). Players are ranked by the size of their voting bloc (\(V_1 > V_2 \ldots > V_m \)). In a simple \(n \)th-past-the-post system, all players through and including the \(n \)th ranked player will advance to the next stage. When \(n \) equals 1, it is obvious that we are simply dealing with the familiar first-past-the-post system, and that—assuming sincere voting—\(P_1 \) will win the day.\(^4\)

Let us then consider a different example. Here, of the \(m \) players, \(n \) will be eliminated. For convenience’s sake, assume \(n \) equals 1 throughout. All other definitions and assumptions remain the same. Assume further that voters are loyal: \(V_i \) will not vote “against” (for the elimination of) \(P_i \forall i \) and that all players want to be in the strongest position in the subsequent round. That implies that all players want to eliminate their strongest rival, which is \(P_1 \) for everyone but Player 1 and \(P_2 \) for Player 1.\(^5\)

In an environment in which \(P_1 \) can directly tell his or her supporters \(V_i \) for whom to vote,

\(^4\)The paradoxes and incentives for strategic voting produced by systems that require electors to vote for a candidate are well understood thanks to the efforts of theorists such as Borda, Condorcet, Dodgson, Arrow, and others (for an accessible review of the history of the mathematics of voting, including arguments about why the assumption of sincere voting is problematic, see Szpiro (2010)). More technical arguments about the implications of sequential voting for Condorcet and other criteria can be found in Bag, Sabourian and Winter (2009) and the references therein.

\(^5\)There are several different plausible stories about why the players might care about their relative ranking. The first is simply that it is better to be next-to-last than last, and thus even players who have no chance of coming in first may still want to improve their relative showing. The second is that the sizes of each player’s voting bloc may be determined in expectation, and thus in any given draw a player may still have a chance of outperforming his or her expected rank depending on turnout. Thus, each player should still want to eliminate his or her most highly ranked rival, since that will maximize their chances of winning.
the number of votes accumulated will be given by:

\[V(P_1) = \left(\sum_{i=1}^{m} V_i \right) - V_1 \]

\[V(P_2) = V_1 \]

Consequently, Player 1 will be eliminated if

\[V_1 < \frac{\sum_{i=1}^{m} V_i}{2} \]

And of \(V_1 > \frac{\sum_{i=1}^{m} V_i}{2} \), Player 2 will be eliminated. These results are intuitive. If Player 1 has a majority of voters, then the moves of the other players' voters will be irrelevant.

Now, let's consider a situation in which voters cannot communicate with their player; that is to say, all they know is that they should vote for someone else. This is most easily modeled as assuming a random draw for voters' behavior. The distribution of votes will now be:

\[V(P_1) = \frac{\left(\sum_{i=1}^{m} V_i \right) - V_1}{n - 1} \]

\[V(P_2) = \frac{\left(\sum_{i=1}^{m} V_i \right) - V_2}{n - 1} \]

\[\ldots V(P_m) = \frac{\left(\sum_{i=1}^{m} V_i \right) - V_m}{n - 1} \]

Note that in this situation, the weakest player will be eliminated because he has the fewest loyal voters. This outcome will come about even though it is none of the players' preference, and is a product of voters' lack of information.

What happens if there are some voters who have perfect information and others who are uninformed? Let us now redefine \(V_i = V_{ip} + V_{if} \), where \(V_{ip} \) represents the share of voters with perfect information and \(V_{if} \) is the share of voters with imperfect information. Let us
consider again the one–person elimination game:

\[V(P_1) = \frac{(\sum_{i=1}^{m} V_{mf}) - V_{1f}}{n - 1} + \left(\sum_{i=1}^{m} V_{mp} \right) - V_{1p} \]

\[V(P_2) = \frac{(\sum_{i=1}^{m} V_{mf}) - V_{2f}}{n - 1} + V_{1p} \]

In this situation, Player 1 will be eliminated\(^6\) when

\[V_{1p} < \frac{1}{2} \left(\frac{V_{2f} - V_{1f}}{(n - 1)} + \sum_{i=1}^{m} V_{mp} \right) \]

The importance of considering heterogenous classes of voters becomes more apparent if we examine a game in which \(V_{1p} = V_{2p} = \ldots = V_{(m-1)p} = 0. \)

\[V(P_1) = \frac{\sum_{i=1}^{m} V_{if} - V_{1f}}{n - 1} + V_{mp} \]

\[V(P_2) = \frac{\sum_{i=1}^{m} V_{if} - V_{2f}}{n - 1} \]

\[\ldots V(P_m) = \frac{\sum_{i=1}^{m} V_{if} - V_{mf}}{n - 1} \]

When will the perfectly–informed voters for Player \(M \) be able to tip the balance? Solving for \(V_{mp} \):

\[\frac{\sum_{i=1}^{m} V_{if} - V_{1f}}{(n - 1)} + V_{mp} = \frac{\sum_{i=1}^{m} V_{1f} - V_{mf}}{(n - 1)} \]

\[V_{mp} = \frac{\sum_{i=1}^{m} V_{if} - V_{mf}}{(n - 1)} - \frac{\sum_{i=1}^{m} V_{if} - V_{1f}}{(n - 1)} \]

\(^6\)The manipulations are slightly complex in this case. Solving for \(V_{ip} \), we find

\[\frac{\sum_{i=1}^{m} V_{mf} - V_{2f}}{(n - 1)} + V_{1p} = \frac{\sum_{i=1}^{m} V_{mf} - V_{1f}}{(n - 1)} + \left(\sum_{i=1}^{m} V_{mp} \right) - V_{ip} \]

\[2V_{1p} = \frac{\sum_{i=1}^{m} V_{mf} - V_{1f}}{(n - 1)} - \frac{\sum_{i=1}^{m} V_{mf} - V_{2f}}{(n - 1)} + \sum_{i=1}^{m} V_{mp} \]

\[2V_{1p} = \frac{V_{2f} - V_{1f}}{(n - 1)} + \sum_{i=1}^{m} V_{mp} \]
\[V_{mp} = \frac{V_{1f} - V_{mf}}{(n - 1)} \]

Therefore, when \(V_{mp} \geq \frac{V_{1f} - V_{mf}}{(n - 1)} \), Player 1 will be eliminated.\(^7\) Thus, there is a range of values for which the player with the fewest but best–informed voters can decide the outcome of the contest. Note that this is identical in every way to the earlier example in which Player \(M \) was eliminated except that we have allowed for some of Player \(M \)’s voters to cast their ballots in accordance with \(M \)’s unobservable instructions.

3 Empirical observations

The simple model above illuminates one important aspect of how the contest unfolded. Although we were unsure of our exact ranking in terms of raw voters, we were confident both that we were not the strongest team in that round (other candidates had access to Twitter feeds with tens of thousands of followers, for instance) and that we had by far the lowest transaction costs for old–fashioned, face–to–face campaigning because of our pre-existing campaign structure and our presence on a college campus.

That last point proved key. Using our public social–networking outlets, we asked voters to go to the contest Web site and vote “ABC”—“Anybody But Conor.”\(^8\) Such measures were necessary both because we wanted to raise other candidates’ vote totals and also because we needed to make sure that none of our supporters (a coalition ranging from tech–savvy doctoral students to grandmothers) inadvertently cast a ballot “for” our candidate. But in private, we named names and directed votes against the candidate we wanted to eliminate. All of the other candidates similarly encouraged their supporters to vote for anyone but themselves—but the other contestants’ workplaces (a small nonprofit, a television station, and a home office) lacked ready, cheap, and unobservable access to thousands of undergrads, grad students, and faculty.

\(^7\) Similar solutions hold if Player \(M \) decides to choose some other candidate for elimination if, for instance, \(V_{mp} \) is not large enough to knock out Player 1.

\(^8\) A reworking, of course, of the 1992 “Anybody But Clinton” slogan.
The model is not a complete representation of reality. As Schelling (1980) demonstrates, coordination of individual actions without overt communication is possible if individuals can use “focal points” instead. In this case, it is likely that gender served as a focal point for at least one contestant’s supporters, who largely came from feminist blogs and Twitter feeds.9 Surprisingly, women *qua* women (or, perhaps, feminists *qua* feminists) may be more likely to engage in conscious discriminatory voting using gender as a focal point than men, as two different investigations of strategy on the early 2000s television game show *The Weakest Link* (which featured sequential elimination rounds in which the contestants were also voters) have found (Antonovics, Arcidiacono and Walsh 2005; Boston 2003). In a more searching examination of the show, Levitt (2004) finds that there is some evidence of gender-based discrimination and that there is substantively large potential evidence of discrimination against Hispanics and older players. Since all players in the round were white and none were (apparently) older than middle-aged, there is reason to suspect that gender-based discrimination played some role for some voters, but in the absence of information about the voter pool it is difficult to say how great such effects were. Gender is a weak focal point in this case, since there were two male candidates and two females in the round. Further, a voter who wanted to ensure that a woman won might plausibly vote against a weak female candidate in order to guarantee that only the strongest female candidate would be present in the final round.

On the whole, despite the obvious data limitations and minor points like the presence or absence of focal points, the simple model works fairly well. As Table 2 shows, the theory and the model are consistent with the observation that turnout fell precipitously in the second round, with all candidates except the top-ranked entrant receiving fewer votes than they had in the initial round or would in the final round. The point of the theory is that it is harder to use social networks to campaign *against* someone than to campaign for them, and the turnout figures support that claim. Further, the vote-total patterns for Ted Reinstein

do indicate that informed voters were casting their ballots as the model predicts.

[Insert Table 2 here]

4 Conclusion

In an update on the contest blog announcing the exit of the apparently top-ranked contestant, the Post’s contest impresario wondered: “Was there strategic voting in this round, in which we asked readers to vote to eliminate rather than to advance a contestant?”\(^{10}\) Of course there was. The contestants and informed, committed voters would have been foolish to act otherwise. The question, rather, is whether such strategic voting altered the outcome. It is likely that such voting at least changed the identity of the contestant who was eliminated in that particular round. My model suggests that in the absence of the ability to coordinate voting, the weakest player should be eliminated and the strongest ones remain, but that if a weaker player has more, better-informed voters, that one of the strongest players should be eliminated. The latter scenario, of course, is what came to pass.

Are there larger lessons to be learned from this toy example? I suspect there are. Varian (2010) suggests that an underappreciated aspect of information technology revolutions is their ability to foster development in types and ways of contracting and managing firm–customer and worker–worker relationships. Political scientists are hardly unaware of the ways in which new media have affected campaigns, and research about the use of campaign Web sites, of Twitter feeds and YouTube ads, and the acceleration of the news cycle has proceeded apace. Yet perhaps there is more to be done in the systematic study of the differentiation of message via channels according to their degree of observability. It is all but certain that the Republican or Democratic message presented via television advertisements or candidates’ public speeches is vastly different than that which the party faithful consume via targeted and often informal outlets, for instance.

\(^{10}\)http://views.washingtonpost.com/pundit-judges/
More intriguing, such targeted outlets may allow groups otherwise barred from formally coordinating their efforts (such as the Karl Rove–linked group American Crossroads and the Koch brothers–linked Americans for Prosperity) to do so via “public” channels. For instance, William Kristol—the editor of the *Weekly Standard* and an influential neoconservative—suggested that the campaign for Dennis Kucinich’s seat “could be an interesting race for people to consider last minute contributions to—or even IE expenditures, perhaps focused on national security, where Kucinich’s militant hostility to American victory abroad, and to supporting the troops, is probably at odds with his blue–collar constituents.”¹¹ (“IE” stands for “independent expenditures,” such as those made by 501(c)(d) groups like Americans for Prosperity.)

The larger point is simply that political scientists should think carefully about what is and is not observable in communications and how variations in campaign structure or in communications technology will affect political processes. In this highly stylized example, it appears that the *Post’s* rule change may have altered the ultimate outcome in a way that the contest’s organizers may not have expected. Similar changes undoubtedly take place in a variety of political fora, from public elections to legislative rule–making to bureaucratic signaling. In such fora, the stakes are clearly more important than the identity of America’s next great pundit.

References

Rosenberg, Alyssa. 2010. “The Other Election: City elections are predictable, but a vote at the Post disappointed some progressives.”

Table 1: Summary of *Washington Post* pundit contest rounds and rules. Five of the ten quarterfinalists were chosen by the editors from the pool of 1,500 entrants; the remaining five were picked by visitors to the *Post’s* Web site from a pool of 50.

<table>
<thead>
<tr>
<th>Round</th>
<th>Pundit Skill</th>
<th># Candidates</th>
<th># Advancing</th>
<th>Vote Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blogging</td>
<td>10</td>
<td>4</td>
<td>Past-the-post</td>
</tr>
<tr>
<td>2</td>
<td>Chat, talk show</td>
<td>4</td>
<td>3</td>
<td>Elimination</td>
</tr>
<tr>
<td>3</td>
<td>Op-Ed</td>
<td>3</td>
<td>1</td>
<td>Past-the-post</td>
</tr>
</tbody>
</table>
Table 2: Results of *Washington Post* pundit contest rounds. The judges chose one contestant to automatically advance from Round 1 to Round 2.

<table>
<thead>
<tr>
<th></th>
<th>Round 1</th>
<th></th>
<th>Round 2</th>
<th></th>
<th>Round 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vote</td>
<td>Rank</td>
<td>Vote</td>
<td>Rank</td>
<td>Vote</td>
<td>Rank</td>
</tr>
<tr>
<td>Conor Williams</td>
<td>446</td>
<td>3</td>
<td>253</td>
<td>3</td>
<td>1559</td>
<td>1</td>
</tr>
<tr>
<td>Nancy Goldstein</td>
<td>*</td>
<td>NA</td>
<td>430</td>
<td>2</td>
<td>1167</td>
<td>2</td>
</tr>
<tr>
<td>Lauren Hogan</td>
<td>544</td>
<td>2</td>
<td>175</td>
<td>4</td>
<td>707</td>
<td>3</td>
</tr>
<tr>
<td>Ted Reinstein</td>
<td>638</td>
<td>1</td>
<td>734</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>William Cunion</td>
<td>380</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthony Tata</td>
<td>304</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryan McElveen</td>
<td>280</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robert Lehrman</td>
<td>273</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amina Luqman</td>
<td>43</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paul Rosenszweig</td>
<td>25</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Round Totals</td>
<td>2933</td>
<td></td>
<td>1592</td>
<td></td>
<td>3433</td>
<td></td>
</tr>
</tbody>
</table>